honor

2022zhongkao

zuotijia

 
 
9 首页 18
8 大学生教员 17
8 在职教师 17
7 学员信息 16
6 明星教员 15
5 金牌教员 14
4 家教价格 13
3 家教社区 12
2 在线留言 11
1 加盟合作 10
 欢迎您来到乌鲁木齐欢欢家教网!
小学部 初中部 高中部 我要请家教 | 我要做家教 | 学员搜索 | 网站公告 | 联系我们 | 免费家教发布 | 紧急家教信息
 
家教社区
网站公告栏
站点公告
置顶信息
小学部-小升初
初中部-中考
高中部-高考
艺考专题
通知
名师一对一
上门家教
精品小班
在线一对一
教师资格公示
学习辅导
成功案例
名师在线
学霸支招
聚焦名校
精彩视频
名人与教育
美文欣赏
家教必读
服务指南
请家教常见问题
做家教常见问题
家长课堂
备考题库
英语家教
语文家教
生物家教
政治家教
历史家教
地理家教
数学家教
物理家教
化学家教
理综文综(高考)
理化、政史(中考)
学考专题
小学奥数
教师加油站
教师加油站
培训交流
正能量专区
教育资讯
乌鲁木齐教育新闻
新疆教育新闻
政策前沿
教育前沿
关于欢欢家教
关于我们
媒体报道
联系我们
人才招聘
加盟政策
企业文化
欢欢家教大事记
荣誉资质
新媒体
法律顾问
欢欢公益
罗欢欢专题
 
高三数学指导:掌握常规数学思维模式
2009-10-23
 1\文科考生说,我们不考“数归法”,我告诉你:“归纳——猜想——验证”,这是一个解答题、体现思维能力的好的思维模式。

  分析、讨论、判断、取舍;归纳——猜想——验证;一般——特殊相互转化,这些最基础、最常规的思维模式,妙用无穷,“看似寻常最奇崛,成为容易却艰辛”(王安石)。

  2、方程式←→函数化

  方程问题函数化,函数问题方程化,这两化把方程的思想,函数思想融为一体,相互转化,使“利用函数性质解题”这个数学的大课题生辉,诸如不等←→函数增、减等一系列的简单思维模式到处可用。

  二次函数y=ax2+bx+c(a≠0)求极值方法之一是判别式法(函数问题方程化)∵方程ax2+bx+(c-y)=0有实根,∴△=b2-4a(c-y)≥0

  4ay≥4ac-b2 a>0时 y≥■即

  y小=■;a<0时,y≤■

  即y大=■

  例2.已知A、B是△ABC的两个内角,且tanA、tanB是方程x2+mx+m+1=0的两个实根,求实数m的取值范围。

  韦达定理,和积关系→常见转化方式

  ■

  ∴A+B=45°→x1=tanA<1,x2=tanB<1

  且都大于0。

  难点如何定m的范围:函数化。

  f(x)=x2+mx+m+1有二正根且都在(0,1)之间的条件:(△≥0不能保证根的范围)

  对照图象:

  ■

  (为什么不必△≥0?你能很清晰吗?)

  解得:-1

  这是典型的方程问题函数化,确定参数取值范围的试题。

  例3.(2008上海 理11)方程x2+■x-1=0的解可视为函数y=x+■的图像与函数y=■的图像交点的横坐标,若x4+ax-4=0的各个实根x1,x2,…,xk(k≤4),所对应的点(x1,■)(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是_________。

  答案:(-∞,-6)∪(6,+∞)

  ●解法1:依题意x4+ax-4=0←→x3+a=■ 由图示及奇函数y=x3的图像关于原点对称的性质,得知当y=x3+a的图像从过B点起,向下平移或向上平移时,交点均在y=x同侧。

  ∵A(-2,2),B(2,2),∴把A、B坐标代入y=x3+a得a=-6或a=6,故a<-6或a>6即为所求。

  ●解法2:依题意,结合图形分析,■,得y=a+8或y=a-8

  分别令y<2或y>-2,得a<-6或a>6。

  [点拨评析]作为一道综合性较强、分值不高的填空题,从“数形结合”的思想出发,通过作图开辟解题思路,简明、具体。试题本身就在提示你,“数形结合”可以作为一种思维模式,实现方程化←→函数化的完美结合。

  解题的通式、通法都可以从中提炼出可操作的模式,形成思维规律。如解不等式sinx>■。如下思维操作定能“做一题,通一类”。
关于我们 | 广告报价 | 联系方式
(C)2008-2010 乌鲁木齐欢欢家教网_乌鲁木齐家教中心_乌鲁木齐中考全日制_乌鲁木齐提分专家_乌鲁木齐家教门户 版权所有   新ICP备14000276号-5   客服QQ: 客服1
未经本家教网授权同意,不得转载本网站任何信息!!