honor

2022zhongkao

zuotijia

 
 
9 首页 18
8 大学生教员 17
8 在职教师 17
7 学员信息 16
6 明星教员 15
5 金牌教员 14
4 家教价格 13
3 家教社区 12
2 在线留言 11
1 加盟合作 10
 欢迎您来到乌鲁木齐欢欢家教网!
小学部 初中部 高中部 我要请家教 | 我要做家教 | 学员搜索 | 网站公告 | 联系我们 | 免费家教发布 | 紧急家教信息
 
家教社区
网站公告栏
站点公告
置顶信息
小学部-小升初
初中部-中考
高中部-高考
艺考专题
通知
名师一对一
上门家教
精品小班
在线一对一
教师资格公示
学习辅导
成功案例
名师在线
学霸支招
聚焦名校
精彩视频
名人与教育
美文欣赏
家教必读
服务指南
请家教常见问题
做家教常见问题
家长课堂
备考题库
英语家教
语文家教
生物家教
政治家教
历史家教
地理家教
数学家教
物理家教
化学家教
理综文综(高考)
理化、政史(中考)
学考专题
小学奥数
教师加油站
教师加油站
培训交流
正能量专区
教育资讯
乌鲁木齐教育新闻
新疆教育新闻
政策前沿
教育前沿
关于欢欢家教
关于我们
媒体报道
联系我们
人才招聘
加盟政策
企业文化
欢欢家教大事记
荣誉资质
新媒体
法律顾问
欢欢公益
罗欢欢专题
 
乌鲁木齐小学数学应用题解法
2009-10-22
小学数学应用题是教学的重点,又是教学的难点。因此在总复习中它至关重要。应用题的系统复习有助于学生理解概念,掌握数量关系,培养和提高分析问题、解决问题的能力。现就多年来的教学实践,对应用题的复习教

  学浅淡几点体会。

  一、强化基础训练,掌握数量关系

  基本的数量关系是指加、减、乘、除法的基本应用,比如:求两个数量相差多少,用减法解答;求一个数是另一个数的百分之几,用除法解答;求一个数的几倍是多少,用乘法解答等。还有速度、时间和路程,单价、数量和总价,工效、时间和总量等。任何一道复合应用题都是由几道有联系的一步应用题组合而成的。因此,基本的数量关系是解答应用题的基础。在复习时,我们特意安排了一些补充条件的问题和练习,目的是强化学生的基础知识。使学生看到问题立刻想到解决问题所必需的两个条件;看到两个条件能迅速想到可以解决什么问题。在此基础上再出些有助于训练发散性思维的练习题。如给出两个条件:甲数是10,乙数是8,要求学生尽可能的多提出些问题。练习时,先要求学生提出用一步解答的问题,如:“甲数比乙数多多少”,“乙数比甲数少多少”“乙数占甲数的几分之几”等。然后再要求学生提出用两步解答的问题,如“甲数比乙数多几分之几”,“甲数给乙数多少两数相等”,“乙数比甲数少几分之几”“乙数占两数和的几分之几”等。

  对于常用的数量关系,我们复习时还采用给名称要学生编题的练习形式。如已知单价和总价,编求数量的题目;已知路程和时间,编求速度的题目等。

  通过这种形式的训练,使学生进一步牢固掌握基本的数量关系。为解答较复杂的应用题打下良好基础。在编题训练的过程中,还要注意指导学生对数学术语的准确理解和运用。只有准确理解,才能正确运用。如增加、增加到、

增加了,提高、提高到、提高了,扩大,缩小等。发现错误,及时纠正。

  对易混的术语,如减少了和减少到等要让学生区别清楚。

  逆叙的条件,学生容易搞错它们的数量关系。教苹果树:学实践证明,要求学生画图是搞清数量之间关系的有效形式。如:梨树3100 棵,比苹果树的3 倍还多400 棵,苹果树有多少棵?,从图中可以看出梨树:梨树棵数减去400 棵,正好是苹果树棵数的3 倍,这样可以避免学生出现:(3100+400)÷3 的错误算式。

  二、综合运用知识,拓宽解题思路

  能够正确解答应用题,是学生能综合运用所学知识的具体表现。应用题的解答一般采用综合法和分析法。我们在复习时侧重教给分析法。如:李师傅计划做820 个零件,已经做了4 天,平均每天做50 个,其余的6 天做完,

平均每天要做多少个?

  分析方法是从问题入手,寻找解决问题的条件。即:①要求平均每天做__多少个,必须知道余下的个数和工作的天数(6 天)这两个条件。②要求余下多少个,就要知道计划生产多少个(820 个)和已经生产了多少个。③要

求已经生产了多少个,需要知道已经做的天数(4 天)和平均每天做的个数(50 个)。在复习过程中,我们注重要求学生把分析思考的过程用语言表述出来。学生能说清楚,就证明他的思维是理顺的。既要重视学生的计算结果,更要重视学生表述的分析过程。

  实际上在分析应用题时,分析法和综合法两种方法是结合运用,相互包含的。这就是说在分析已知条件时要时刻注意题目的问题,这样综合才不会偏离问题;从问题出发,提出解决这个问题所必备的条件时要想到题目中的已知条件,只有这样提出的条件才能从已知条件中找到或求出来。有些应用题,靠上述两种方法分析仍是不够的。这就需要教给学生另外一些分析问题的方法,拓宽解题思路。常用的有两种,即转化法和假设法。

  例如:有甲、乙、丙三袋大米,甲袋大米的重量是乙袋的3 倍,又是丙袋的4 倍,又知乙袋比丙袋多8 千克。问三袋大米各重多少克?

  这样思考:从已知条件看出,甲袋大米的重量分别以乙袋和丙袋为标准,

  统一标准量是解题的关键。应用转化法就能统一标准量,即以甲袋重量为标准量,则乙袋的重量的甲袋的,丙袋的重量是甲袋的。这样解答本题就很容易了。

  要使学生明白怎样转化简便就怎样转化。上题如果统一成以乙袋或两袋的重量为标准量难度就大了。

  又如:甲、乙两个仓库内原来共存货物是480 吨,现在甲仓又运进所存货物的40%,乙仓又运进它所存货物的25%,这时两仓共存货645 吨。原来两仓各存货物多少吨?

  这样思考:假设两仓库都运进所存货物的40%,那么可知共运进货物为:480×40%=192(吨)而实际两仓运进645-480=165(吨)从而可知多算了192-165=27(吨)。为什么多算了27 吨呢?这是因为乙仓实际运进了它所存货物的25%,而我们也当作运进所存货为的40%计算了。从而可知,乙仓原来所存货物的40%与25%的差是27 吨,于是可知乙仓原来有货物:27÷(40%-25%)=180(吨)甲仓原有货物:480-180=300(吨)。用假设法解题的思考方法是:先根据解题的需要对已知条件做出假设,通过假设引出矛盾,然后分析产生矛盾的原因,把原因找到了,问题也就迎刃而解了。当然,转化法和假设法的解题方法掌握起来是比较困难的,在总复习时,我们根据学生的实际状况,适量地涉及一部分这类题目。使学有余力的学生感到负荷饱满,不作为对全体学生的共同要求。

三、系统整理归纳,形成知识网络

  数学知识之间是有密切联系的。例如:两个同类量进行比较时,会产生两种情况,一种是相等,一种是不等,由不等便出现了差,于是引出围绕“差”的一系列数量关系,如:大数-小数=差;大数-差=小数;小数+差=大数等。

  在比差的基础上又发展为比较两个同类数量之间的倍数关系,若甲数是a,乙数是3a,则乙数是甲数的3 倍。在整数倍的基础上,又扩展为小数倍,再扩展为分数倍。在分数倍里,倍数可以小于1。随着“倍”的概念的建立和发展,又出现了围绕着“倍”的一系列数量关系。

  例如:求一个数的几倍,几分之几倍,几分之几是多少,都用乘法计算;求一个数是另一个数的几倍、几又几分之几、几分之几、百分之几都用除法计算等。学习了比的知识以后两个数之间的倍数关系也可以用比的形式表示。如:甲数是乙数的5 倍,我们就说,甲数与乙数的比是5∶1。再如:工程,已经完成了,对于这个倍数关系,我们也可以这样理解,已经完成的与全工程的比是3∶5,或已经完成与未完成的比是3∶(5-3)。通过这样复习,就把以“差”和“倍”为核心的知识纵向地串在一起,有利于学生形成良好的知识结构,为今后正确地运用知识打下坚实的基础。

  在应用题复习中,一题多解是沟通知识之间内在联系的一种行之有效的练习形式。它不但有助于学生牢固地掌握数量关系,而且可以开阔解题思路,提高学生多角度地分析问题的能力。

  例如:一个修路队,原计划每天修80米,实际每天比原计划多修20%,结果用12.5 天就完成任务。原计划多少天完成任务?可有下列解法:

  1.80×(1+20%)×12.5÷8=15(天)

  2.1÷ [1/12.5 ÷(1+ 20%)] = 15(天)

  3.12.5×(1+20%)=15(天)

  4.设计划用x 天完成。

  80x=80×(1+20%)×12.5 x=15

  5.设原计划用x 天完成。

  ①80∶80×(1+20%)=12.5∶x x=15

  ②1∶(1+20%)=12.5∶x x=15

  上述五种解法分别是按解一般应用题的思路、工程问题的思路、分数应用题的思路、方程的思路和用比例解的思路进行分析的。通过本题的复习,引导学生找出各知识点之间的联系,使学过的解应用题的各种知识得以融会贯通和综合应用,拓宽了学生的解题思路。
关于我们 | 广告报价 | 联系方式
(C)2008-2010 乌鲁木齐欢欢家教网_乌鲁木齐家教中心_乌鲁木齐中考全日制_乌鲁木齐提分专家_乌鲁木齐家教门户 版权所有   新ICP备14000276号-5   客服QQ: 客服1
未经本家教网授权同意,不得转载本网站任何信息!!